Sitemap
A list of all the posts and pages found on the site. For you robots out there, there is an XML version available for digesting as well.
Pages
Posts
Future Blog Post
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Blog Post number 4
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Blog Post number 3
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Blog Post number 2
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Blog Post number 1
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
portfolio
Portfolio item number 1
Short description of portfolio item number 1
Portfolio item number 2
Short description of portfolio item number 2
publications
Transformers for Complex Query Answering over Knowledge Hypergraphs
Hong Ting Tsang, Zihao Wang, Yangqiu Song
Published in , 2025
Complex Query Answering (CQA) has been extensively studied in recent years. In order to model data that is closer to real-world distribution, knowledge graphs with different modalities have been introduced. Triple KGs, as the classic KGs composed of entities and relations of arity 2, have limited representation of real-world facts. Real-world data is more sophisticated. While hyper-relational graphs have been introduced, there are limitations in representing relationships of varying arity that contain entities with equal contributions. To address this gap, we sampled new CQA datasets: JF17k-HCQA and M-FB15k-HCQA. Each dataset contains various query types that include logical operations such as projection, negation, conjunction, and disjunction. In order to answer knowledge hypergraph (KHG) existential first-order queries, we propose a two-stage transformer model, the Logical Knowledge Hypergraph Transformer (LKHGT), which consists of a Projection Encoder for atomic projection and a Logical Encoder for complex logical operations. Both encoders are equipped with Type Aware Bias (TAB) for capturing token interactions. Experimental results on CQA datasets show that LKHGT is a state-of-the-art CQA method over KHG and is able to generalize to out-of-distribution query types.
TERAG: Token-Efficient Graph-Based Retrieval-Augmented Generation
Qiao Xiao, Hong Ting Tsang, Jiaxin Bai
Published in , 2025
Graph-based Retrieval-augmented generation (RAG) has become a widely studied approach for improving the reasoning, accuracy, and factuality of Large Language Models. However, many existing graph-based RAG systems overlook the high cost associated with LLM token usage during graph construction, hindering large-scale adoption. To address this, we propose TERAG, a simple yet effective framework designed to build informative graphs at a significantly lower cost. Inspired by HippoRAG, we incorporate Personalized PageRank (PPR) during the retrieval phase, and we achieve at least 80% of the accuracy of widely used graph-based RAG methods while consuming only 3%-11% of the output tokens.
Top Ten Challenges Towards Agentic Neural Graph Databases
Jiaxin Bai, Zihao Wang, Yukun Zhou, Hang Yin, Weizhi Fei, Qi Hu, Zheye Deng, Jiayang Cheng, Tianshi Zheng, Hong Ting Tsang, Yisen Gao, Zhongwei Xie, Yufei Li, Lixin Fan, Binhang Yuan, Wei Wang, Lei Chen, Xiaofang Zhou, Yangqiu Song
Published in IEEE Data Engineering Bulletin, 2025
Graph databases (GDBs) like Neo4j and TigerGraph excel at handling interconnected data but lack advanced inference capabilities. Neural Graph Databases (NGDBs) address this by integrating Graph Neural Networks (GNNs) for predictive analysis and reasoning over incomplete or noisy data. However, NGDBs rely on predefined queries and lack autonomy and adaptability. This paper introduces Agentic Neural Graph Databases (Agentic NGDBs), which extend NGDBs with three core functionalities: autonomous query construction, neural query execution, and continuous learning. We identify ten key challenges in realizing Agentic NGDBs: semantic unit representation, abductive reasoning, scalable query execution, and integration with foundation models like large language models (LLMs). By addressing these challenges, Agentic NGDBs can enable intelligent, self-improving systems for modern data-driven applications, paving the way for adaptable and autonomous data management solutions.
AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
Jiaxin Bai, Wei Fan, Qi Hu, Qing Zong, Chunyang Li, Hong Ting Tsang, Hongyu Luo, Yauwai Yim, Haoyu Huang, Xiao Zhou, Feng Qin, Tianshi Zheng, Xi Peng, Xin Yao, Huiwen Yang, Leijie Wu, Yi Ji, Gong Zhang, Renhai Chen, Yangqiu Song
Published in , 2025
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 92% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery.
Tianshi Zheng , Zheye Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, Yangqiu Song
Published in EMNLP, 2025
Large Language Models (LLMs) are catalyzing a paradigm shift in scientific discovery, evolving from task-specific automation tools into increasingly autonomous agents and fundamentally redefining research processes and human-AI collaboration. This survey systematically charts this burgeoning field, placing a central focus on the changing roles and escalating capabilities of LLMs in science. Through the lens of the scientific method, we introduce a foundational three-level taxonomy-Tool, Analyst, and Scientist-to delineate their escalating autonomy and evolving responsibilities within the research lifecycle. We further identify pivotal challenges and future research trajectories such as robotic automation, self-improvement, and ethical governance. Overall, this survey provides a conceptual architecture and strategic foresight to navigate and shape the future of AI-driven scientific discovery, fostering both rapid innovation and responsible advancement. Github Repository: https://github.com/HKUST-KnowComp/Awesome-LLM-Scientific-Discovery.
talks
Talk 1 on Relevant Topic in Your Field
Published:
This is a description of your talk, which is a markdown file that can be all markdown-ified like any other post. Yay markdown!
Conference Proceeding talk 3 on Relevant Topic in Your Field
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
teaching
COMP 4332 - Big Data Mining and Management
TA, 24-25 Spring
COMP 4222 - Machine Learning with Structured Data
TA, 25-26 Fall